Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

6 Reasons Bearing Isolators Leak Lubricant

Inpro-Seal

6 Reasons Bearing Isolators Leak Lubricant

Look out for these common pitfalls, and don’t assume that a lubrication leak means seal failure.

A well-known technique for increasing pump reliability is sealing the bearing housing with permanent non-contacting Inpro/Seal Bearing Isolators rather than contact seals. Because contact seals use contact as their sealing method, they have a more limited life expectancy, since they can wear at the point of contact or groove the shaft. When this occurs, lubricant will escape to atmosphere and contaminants will enter the bearing housing, leading to bearing failure. Inpro/Seal Bearing Isolators effectively retain lubricants and exclude contaminants while providing a virtually infi nite life expectancy. This increases mean time between repair (MTBR).

The most common perception of bearing housing seal failure on process pumps is lubricating oil leaking from the bearing housing. For most operators, the analysis is simple: no leaking oil means the seal is fine while leaking oil equates to failure. Though true for contact seals, the presence of leaking oil from a Bearing Isolator is most likely due to factors other than seal failure.

Following are some of the more common causes of Bearing Isolator lubricant leakage in process pumps.

1. TOO MUCH OIL

It seems simple, but the greatest cause of Bearing Isolator leakage on process pumps is an over-filled bearing housing. It has become common practice for maintenance professionals to fi ll up to, if not a bit over, the maximum fill line. The thinking is that if leakage occurs, there will be extra lubricant available. This practice can inadvertently contribute to leakage. Fortunately, once returned to the proper level, Bearing Isolators will generally stop leaking and return to normal function. There may be some oil leakage as the seal clears itself of excess lubricant, but that should diminish over time.

2. ORIENTATION

Inpro/Seal Bearing Isolators have a lubricant return designed into their respective labyrinth patterns. This return needs to be installed at the bottom dead-center or six o’clock position of the Bearing Isolator for proper function. This allows oil to easily return to the sump.

3. OBSTRUCTED LUBRICANT RETURN PATH

Inpro/Seal Bearing Isolators are effective at collecting splash lubricant in their respective labyrinth patterns. Once they have collected the lubricant, they need a clear, unobstructed path to return collected lubricant back to sump. But the return path to the sump may be blocked by counter-bores in the housing, which were originally designed to provide a positive stop for pressed-in lip seals. The area between the bearing and the bearing housing seal may lack a drain channel. When this occurs, lubricant will accumulate in this area until the space becomes completely flooded and the seal leaks. To solve this, the area between the bearing and the Bearing Isolator must include an unobstructed return pathway to the sump. Relying on the lubricant to drain to sump only through the bearing will likely result in lubricant leakage.

4. IMPROPERLY APPLIED EXTERNAL OILERS

External oilers are extremely sensitive to position and must be installed on the proper side of the housing relative to the direction of shaft rotation following the manufacturer’s guidelines. Oilers must also be installed square and straight. The pipe connecting the external oiler to the bearing housing must also be suffi ciently ridged to prevent vibration or shaking the oiler. Questionable installations may result in over-filling of the bearing housing and subsequent lubricant leakage.

5. WIND

The forceful flow of air over a bearing housing can cause lubricant leakage by creating a pressure differential between the inside and outside of the bearing housing. Couplings and external cooling fans attached to pump bearing housings are a potential source of harmful air flow. Gapless, solid coupling guards that enclose the bearing housing seals with little or no gap around the bearing housing may induce leakage. While taking all required safety precautions, having some of the coupling and fan guarding accomplished by tight grating, rather than solid surfaces, allows for better air fl ow and helps prevent pressure from building.

6. IMPROPER NON-CONTACT SEAL SELECTION

Some Inpro/Seal Bearing Isolators are designed specifically for grease lubrication, others for oil or oil mist. There are some designs that can handle all lubrication types in a single design. In some instances, benefi ts can be achieved by designing Bearing Isolators for specific applications rather than relying on standard catalog items. For example, in pump bearing housings with a high degree of lubricant splash, designing the labyrinth pattern to communicate directly with the lubricant return path can greatly increase effectiveness. Inpro/Seal’s experienced sales and engineering team can design engineered-to-order seals quickly and economically, and ensure the seal design addresses any concerns and is applied to provide the best reliability possible. Time spent on up-front engineering tasks is well worth the effort, and assures the Bearing Isolators will perform as intended.

The advantage of permanent, non-wearing Inpro/Seal Bearing Isolators is that once properly applied, they perform essentially trouble-free for years with no degradation in performance. The challenge is that they require a bit more attention to application details. Taking the time to check a few simple parameters will go a long way towards ensuring trouble-free operation.

With over 60,000 individual designs, Inpro/Seal will design the right Bearing Isolator to meet equipment and environment requirements. Visit www.inpro-seal.com for more solutions.

About the Author: Neil Hoehle is Chief Engineer for Inpro/Seal, LLC, a Waukesha Bearings business. Hoehle has spent more than 35 years in the design and development of non-contact bearing housing seals, air-purged sealing, and other rotating shaft sealing devises and holds several related patents. Hoehle holds a B.A. from Western Illinois University and an M.B.A. from the University of Iowa.

Email him at nhoehle@inpro-seal.com or call 309-756-5335.

*Article originally published in Pumps & Systems print magazine.

Related Articles

Related Whitepapers

What is Water Hammer and Why It Is Important to Prevent?

Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the…

Five Reasons To Choose A Bearingless Torque Sensor

Benefits that improve your torque measurements Best real-world accuracy Highest Overload Highest Overrange

Advanced Sealing and Condition Monitoring Strategies In Water and Wastewater Plants

Introduction As a plant/maintenance manager or reliability engineer for a water or wastewater facility, you want to know about the best technologies to help your…

Downthrust Measurement in Vertical Pumps Prevents Failure: The Benefits of Measuring Axial Force in Real-Time

“Himmelstein’s Thrustmeter has proven to be accurate and repeatable, which are two of the main things that define quality in an instrument. It’s been a…

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *