Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Steam Condensate: Important Things to Know

Chemical

Steam Condensate: Important Things to Know

By: DFT Inc.

In the Video above, DFT Valves provides an engaging, informative overview of steam condensate and its critical role in industry today. The webinar includes a short history of steam condensate, some of the most common problems that arise when utilizing it, solutions to those problems, and a survey of its many modern applications.

Author: Jeff Kane, DFT Valves

The History of Steam Condensate

The history section of our webinar discusses the origins of steam research, beginning with Thomas Savery, who invented the first steam engine in England at the end of the 17th century. He developed and patented it for use in pumping wells in 1698. Thomas Newcomen would later refine that invention in 1712, adding water tanks and pump rods so that deeper water mines could be accessed with steam power. In 1778, James Watt further built on these discoveries, employing a gearing system that allowed a steam engine to drive a flywheel in order to produce rotational power, spurring the development of the steam locomotive. These inventions, all originating in England, would become the catalyst for the Industrial Revolution and shape the world as we know it today, with steam power playing an instrumental role in a wide range of industries — including mining, chemical processing, petroleum production, textiles, pulp and paper production, and, most importantly, power generation.

The Basics of Steam Condensate

The webinar then describes the basics of steam condensate, answering the question: Why steam? The main advantages of steam stem from its high efficiency and ease of transportation and control, which make it an ideal medium for heat transfer. Steam power is easy to create due to the abundance of water and wide range of heating options available; simply by managing the temperature and pressure of steam, it can be used for much of the work that powers the industrial world. The three biggest users of stream power today are the power generation, pulp and paper manufacturing, and chemical processing industries; in these sectors, steam is used for all manner of jobs, including automation, dilution, fractionation, quenching, mechanical drive, and stripping.

Common Issues With Steam Condensate

There are some challenges involved in using steam condensate, however. For instance, it’s important to maintain high-quality steam in order to prevent a variety of pipe and valve issues, as low-quality steam can reduce heat-transfer efficiency by as much as 65%. Also, if CO2 combines with steam condensate, the formation of carbonic acid and CO2 gas may occur, which can cause rapid corrosion. Luckily, this can be managed through the use of steam traps, which keep water separated from the steam. Engineers and plant managers must also consider the line sizing of pipes in order to prevent condensate collection, as well as the location and configuration of equipment, the insulation methods used, and the types and quality of different valves used for different applications.

DOWNLOAD THIS eBOOK: The Challenge with Steam Condensatedft valves the challenge with steam condensate eBook

Steam Condensate Q&A

Below, we’ll delve into some of the most common questions we receive regarding steam condensate.

  • Q: Do you propose using traps for all piping loops with low points in offsite piping?
  • A: Yes. The condensate must be removed from the lines in order to prevent water hammer or corrosion of the piping itself.
  • Q: Can you share some guidelines for specifying cracking pressure? Is there a tool one can use?
  • A: It’s best to work with directly a manufacturer to pinpoint the best low cracking pressure options for your specific application. In-line (silent) check valves typically have a cracking pressure of approximately 0.5 psi. Depending on the condensate return piping layout, a standard cracking pressure (CP) valve may allow excess condensate to accumulate. In these scenarios, a lower CP is ideal; options will vary from manufacturer to manufacturer. At DFT, we offer solutions that allow for a CP as low as 0.1 psi.
  • Q: Are there any formulas or tables available for steam pipe sizing?
  • A: We recommend the reference handbook, “Crane Technical Paper No. 410.”
  • Q: Are low cracking pressure check valves only necessary in certain types of steam systems?
  • A: Low cracking pressure valves should be used for condensate return lines, not main steam lines. Also, low CP valves will help reduce the accumulated condensate in return lines.

Related Articles

Chemical Processing Industry Valves

In the chemical processing industry, equipment is often subjected to wide temperature fluctuations, high pressure, and corrosive chemicals. Maintaining control…

Related Whitepapers

How to Read a Pump Curve (and Why you Want to)

If you have ever worked with pumps before, be it in an installation, maintenance, or engineering capacity, chances are high you have seen a pump…

Design Optimization of Jet Fuel Pump for Aviation

Jet fuel pumps play a critical role in the safe and efficient operation of commercial aviation. The performance and reliability of these pumps directly impact…

The Cost Of Downtime In Manufacturing [Infographic]

Downtime can be the most expensive element of any manufacturing operation. Here are some important facts and tips you should know to cut down on…

AFT Fathom used to Model Central Heating Cycle of a State-of-the-art Combined Heat and Power Plant

Kerem Algüzey, design engineer at ENKA Insaat ve Sanayi A.S., used AFT Fathom to simulate the central heating cycle to inform the design of the…

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *