Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Angular Misalignment Tutorial

Maintenance & Reliability
angular misalignment tutorial

Angular Misalignment Tutorial

Author: Stan Riddle, VibrAlign

Angular misalignment can be confusing to many aligners. Offset, or parallel misalignment, can be pretty straightforward. You can even measure it within a few thousandths of an inch with a good straightedge. But angularity can be just as simple to understand, and measure, if a few things are known.

angular-misalignment-pic1

Basically stated, angularity is the gap difference across two coupling faces-normally top to bottom, or side to side.

In the first sketch, the two couplings have no angularity. The gap between the top of the coupling faces, and the gap between the bottom of the coupling faces, is zero.

 

When there is zero angularity, the coupling faces are parallel. It also means the shafts the couplings are mounted to are parallel. They may not be collinear (or in a common straight line), but they are parallel.

In the second sketch, there is a difference in the top gap and the bottom gap. The top gap is 4 angular-misalignment-pic2blocks wide. The bottom gap is 12 blocks wide. So the two coupling faces (and the shafts to which they are mounted) are not parallel.

We know that the couplings and shafts should be parallel, but we don’t know how much until we determine two things:
1. How much does each block represent?
2. What is the distance between the top gap and the bottom gap?

Let’s say each horizontal block represents 1 mil (0.001”). If we say 12 mils (bottom gap) minus 4 mils (top gap), we get 8 mils. But that’s only half of what we need to know. We also need to know the distance between the two gaps.angular-misalignment-pic3

For our example, we measure the diameter of the coupling, which equals 8 inches. Now we have the two measurements we need to define the slope, or angularity, of the coupling faces (and the shafts).

Slope = 8 mils / 8 inches, or 1 mil per inch.

Now we have established the slope – 1 mil per inch. So let’s use this to calculate the correction values at the machine feet.

I need to know the distance from the center of where the two shafts would intersect (normally the center of the coupling), to:
• The inboard feet (12 inches shown here)
• The outboard feet (12 inches + 18 inches, for a total of 30 inches)

angular-misalignment-pic4

And I need to know the slope per inch, which we already calculated to be 1 mil per inch.

Since the slope of the coupling faces is the same as the slope of the shafts (1 mil/inch)
• Inboard Feet=(1mil/in)(12 inches) = 12 mils
• Outboard Feet-=(1 mil/in)(12 inches + 18 inches) = 30 mils

For more information, contact VibrAlign at (800) 394-3279 or visit www.vibralign.com.

Related Articles

SDT Prevent Cavitation Damage

Prevent Cavitation Damage

Ultrasound for Early Detection Cavitation is nearly unavoidable and when left unchecked it will silently erode the efficiency and reliability of…

Related Whitepapers

Implementing Predictive and Prescriptive Digital Maintenance Technologies for Rotating Equipment

Business and operations systems are becoming increasingly integrated in the digital era. With accessible data and information, enhancing the business value of plants that utilize…

Building a Centrifugal Pump Digital Twin for a Chemical Plant

A digital twin represents a physical asset and its function; it contains intelligence to evaluate static and real-time data. Chemical refining plants are asset intensive…

Autonomous Fontan pump: Computational feasibility study

A double-inlet, double-outlet rotary pump was designed to augment Fontan flow through the total cavopulmonary connection. Pump power is supplied by a systemic arterial shunt…

Hydraulic design of a centrifugal LOX pump, including cavitation modeling

The study shows the design and optimization of a LOX centrifugal pump with CFturbo/CFturbo BLADERUNNER 2025.R1 for a fictional rocket engine powered by LOX/RP-1, which…