Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Theory Bites: Euler Equations (Fluid Mechanics)

Engineering & Design
Theory Bites Euler Equations

Theory Bites: Euler Equations (Fluid Mechanics)

Theory bites are a collection of basic hydraulic theory and will touch upon pump design and other areas of pump industry knowledge.

In fluid dynamics, the Euler Equations govern the motion of a compressible, inviscid fluid. They correspond to the Navier Stokes equations with zero viscosity, although they are usually written in the form shown here because this emphasizes the fact that they directly represent the conservation of mass, momentum, and energy.

Euler’s equation for a steady flow of an ideal fluid along a streamline is a relation between the velocity, pressure, and density of a moving fluid. It is based on Newton’s Second Law of Motion. The integration of the equation gives Bernoulli’s equation in the form of energy per unit weight of the following fluid.

It is based on the following assumptions:

  • The fluid is non-viscous (i,e., the frictional losses are zero).
  • The fluid is homogeneous and incompressible (i.e., mass density of the fluid is constant).
  • The flow is continuous, steady, and along the streamline.
  • The velocity of the flow is uniform over the section.
  • No energy or force (except gravity and pressure forces) is involved in the flow.

Picture Source: NASA

Read more Theory Bites!

Related Articles

Related Whitepapers

Implementing Predictive and Prescriptive Digital Maintenance Technologies for Rotating Equipment

Business and operations systems are becoming increasingly integrated in the digital era. With accessible data and information, enhancing the business value of plants that utilize…

Building a Centrifugal Pump Digital Twin for a Chemical Plant

A digital twin represents a physical asset and its function; it contains intelligence to evaluate static and real-time data. Chemical refining plants are asset intensive…

Autonomous Fontan pump: Computational feasibility study

A double-inlet, double-outlet rotary pump was designed to augment Fontan flow through the total cavopulmonary connection. Pump power is supplied by a systemic arterial shunt…

Hydraulic design of a centrifugal LOX pump, including cavitation modeling

The study shows the design and optimization of a LOX centrifugal pump with CFturbo/CFturbo BLADERUNNER 2025.R1 for a fictional rocket engine powered by LOX/RP-1, which…