Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Answers to the Ask an Engineer Brain Teaser #1 – Static Head in Piping Systems

Engineered Software Inc.
Engineered Software Static Head

Answers to the Ask an Engineer Brain Teaser #1 – Static Head in Piping Systems

Below are the answers for the Engineered Software Inc. Brain Teaser #1 – Static Head in Piping Systems. 

1. B-90ft
2. B-90ft
3. B-90ft
4. C-95ft
5. A-87ft


Static Head = Elevation Head Differences + Pressure Head Differences

Elevation Head = (Elevation of product tank liquid surface) – (Elevation of supply tank liquid surface)

System #1:
Static Head = (100 ft + 10 ft) – (0 ft + 20 ft) = 90 ft

System #2:
Even though the pipe enters the middle of the tank at 105 ft elevation, there is still another 5 ft of liquid above the pipe penetration. The discharge of the pump “feels” a column of water that is 110 ft high, and the suction feels 20 ft of water from the supply tank. Static Head = (105 + 5) – (0 + 20) = 90 ft

System #3:
Even though the pipe rises to 120 ft elevation, it drops back down and discharges at 105 ft elevation and there is still another 5 ft of liquid above the discharge of the pipe. The energy it takes to raise the fluid from 105 ft to 120 ft going up is recovered by the siphon effect as the fluid drops from 120 ft to 105 ft to the outlet. The net effect is that the pump still has 110 ft of head it has to push against at the discharge and 20 ft of head at the suction to help it. Static Head = (105 + 5) – (0 + 20) = 90 ft.

System #4:
The outlet of the pipe is at 115 ft elevation, even though it rises to 120 ft then drops back down (5 ft of energy is recovered due to the siphon effect). Static Head = (115) – (20) = 95 ft
(NOTE: When just starting up, the pump has to overcome 100 ft of static head to reach the top of the loop)

System #5:
Since static head is in reference to the fluid going through the pump, System 5 requires a density compensation of the 85 ft of liquid from the heat exchanger to the product tank. Check out the related article from our Knowledge Base that talks about how to do it.

The density of water at 200 F is about 60.1 lb/ft^3, and at 60F it’s about 62.4 lb/ft^3.

85 ft x (60.1/62.4) = 81.9 ft.

Total static head = (static head from pump to HX + head from HX to product tank – head from supply tank to pump)

Total static head = (25 ft + 81.9 ft) � 20 ft = 86.9 ft.

The net effect of the temperature (density) compensation is to reduce the static head by 3 ft to 87 ft.


If you have a suggestion or a Brain Teaser you would like to suggest, please send and email to

We welcome your suggestions and feedback on any of the Ask an Engineer articles.


� 2011 Engineered Software, Inc. 4529 Intelco Loop SE, Lacey, Washington 98503

Related Articles

Related Whitepapers

Climate Control and Extra Cargo Space: a Commercial Facility Case Study

The Armstrong Design Assist service reduced the required floor space for hvac equipment. The ipc 11550, delivered as part of a packaged system, automates the…

Upside Down Condos [Case Study]

This condo tower (324 units on 13 floors) had completed a previous retrofit that unfortunately left the variable speed pumps operating in a fixed mode…

Ras Al Khaimah saves 20% energy and 12% OPEX in wastewater pumping system

RAKWA is the RAK wastewater agency responsible for designing, building, operating, and maintaining all the public wastewater systems. Ras Al Khaimah—known as RAK—is the northernmost…

Intelligent Pumps Exceed Savings Estimates (Commercial Facility Installation Casestudy)

Design Envelope 6800 boosters reduced energy consumption by 76% compared to previous boosters, resulting in annual cost savings of $4,400 per system. Background The Heron’s…


Leave a Reply

Your email address will not be published. Required fields are marked *