Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Variable Frequency Drives in Cold Weather Environments

Aegis
Aegis Variable Frequency Drives in Cold Weather Environments

Variable Frequency Drives in Cold Weather Environments

By: Aegis

AEGIS frequently discusses various applications that can benefit from controlling electric motors with variable frequency drives (VFDs). From the deepest mines to the stratosphere and beyond, the applications are endless. In this post, AEGIS will explore three winter/cold weather-specific uses of VFDs.

#1: HVAC

In fairness, heating, ventilation, and air conditioning use VFDs year-round. But heating is a big one in cold weather – literally hundreds of millions of lives depend on reliable heating in the winter. And VFDs can save huge amounts of energy by running motors only as fast as necessary. VFDs can be used to control the motors driving:

  • Fans for ventilation, forced hot air, and heat exchangers
  • Pumps for circulating heat-exchanging fluids
  • Compressors, an integral part of heat pump design (along with fans and circulation pumps)

Aegis Variable Frequency Drives in Cold Weather Environments#2: Indoor Skating Rinks

What would winter be without hockey? Just as cold, but a lot drearier.

VFDs can be used to drive the refrigerating systems that maintain the ice. Pumps and compressors can run more efficiently on VFD, leading to big savings.

#3: Snowmaking

When natural snowfall is insufficient, ski areas and other outdoor recreational areas supplement it with man-made snow. Snowmaking machines use pumps and compressors to produce winter wonderlands, and as above, these machines can be run more efficiently with VFDs.

These are just a few seasonal applications of variable frequency drives. But regardless of the weather or season, all motors controlled by variable frequency drives should be protected against premature bearing failure with AEGIS® Shaft Grounding Rings. Drives can cause electrical bearing damage to the systems they control, and premature motor failure can easily wipe out all the energy savings they allow.

Related Articles

Related Whitepapers

Advanced Sealing and Condition Monitoring Strategies In Water and Wastewater Plants

Introduction As a plant/maintenance manager or reliability engineer for a water or wastewater facility, you want to know about the best technologies to help your…

Downthrust Measurement in Vertical Pumps Prevents Failure: The Benefits of Measuring Axial Force in Real-Time

“Himmelstein’s Thrustmeter has proven to be accurate and repeatable, which are two of the main things that define quality in an instrument. It’s been a…

Electricity, Power, and Emissions: Using Motor Power Data to Create a Climate-Informed Maintenance Plan

Take Action Today To Make Your Pumps More Efficient Pump motor power levels and energy consumption provide valuable input about the status of and changes…

Energy Efficient Plant Receives Award: A Healthcare Facility Installation

Despite the complex structure of the Mater Dei hospital in Betim, Armstrong was able to deliver a reliable, energy efficient solution with the ipc 9511…

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *