Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Enhancing Pump Applications: 3 Efficiencies Enabled by Electronic Switches

Pumps & Operations
UE Controls Enhancing Pump Applications 3 Efficiencies Enabled by Electronic Switches

Enhancing Pump Applications: 3 Efficiencies Enabled by Electronic Switches

Pumping systems may represent over 50% of both applications and energy consumption in specific industrial facilities. Precise pump control, including alarm and emergency shutdown functions, is critical to a plant operating optimally. While mechanical instrumentation (e.g., pressure, temperature switches) has traditionally been deployed on pumping systems, operators are upgrading to more advanced control and automation technologies (e.g., smart wireless transmitters) so that more data can be extracted at the sensor level. The goal of which is to improve pump operation and plant efficiency. Data has inevitably become the new currency.

Mechanical Switches vs. Electronic Transmitters

Many operators still maintain mechanical switches in their plants as a final line of defense, especially for alarm and emergency shutdown functions. These switches respond quickly (approximately five milliseconds in response time), are easy to operate and are relatively inexpensive compared to process transmitters. Switches can also be wired to these pumping systems for direct emergency shutdown.

There are a few limitations, though. Mechanical switches do not relay any process data and cannot indicate if they are functioning. These devices require regular maintenance that may include removal from service and making delicate adjustments, including inspecting, testing, calibrating and setting the trip points. Some mechanical switches are also vulnerable to vibration, shock and other stresses common in industrial applications such as pumping systems.

Conversely, transmitters play a vital part in data collection and converting measurement parameters into signals that can be trended and logged through modern control systems. Transmitters deliver an array of benefits such as self-diagnostics, high accuracy (0.05% error or lower) and minimal maintenance (calibration every one or two years).

What is less often acknowledged is upgrading from switches to transmitters may not always benefit the end user. Not all applications require the high-end accuracy delivered by process transmitters, and the device cost of transmitters (up to five times more than a mechanical switch) may not justify its benefits. Beyond the device cost, installing transmitters may sometimes require a separate power supply, which means additional wiring infrastructure. Furthermore, connecting a transmitter to a programmable logic controller (PLC) requires the additional step of reprogramming switch set points into the ladder logic of the PLC.

Industries’ need for instrumentation simplicity, reliability and data signals the need for a hybrid solution that combines the benefits of mechanical switches and transmitters.

Electronic Switches— A Hybrid Solution

Electronic switches combine the advantages of transmitters and mechanical switches. Leading electronic switch brands feature innovative capabilities to meet the vast needs and high demands of an industrial environment. For example, some electronic switches offer plugged port detection. This capability notifies the operator to clear the process port if it becomes plugged due to process debris buildup, or when a block and bleed valve is accidentally left closed during maintenance. Such abnormalities can be addressed quickly, resulting in increased operational uptime and accurate process and safety monitoring. One advantage an electronic switch has over both a mechanical switch and transmitter is it allows for field programming of set points and deadband through a keypad on the device. The device does not need to be taken out of service for manual adjustment (compared to a mechanical switch) or have its set points reprogrammed at the PLC level (compared to a transmitter). Image 1 compares a mechanical switch, transmitter and electronic switch.

Characteristics

Mechanical Switch

Transmitter

Electronic Switch

Set point and

Deadband Adjustment

Manual Through adjustment screw.

Limited Adjustability range

Through PLC or DCS Local keypad.

Full range adjustability

Display of process info No Yes Yes
Accuracy 2.5% 0.05% 0.5%
Diagnostic Capability No Yes Yes
Number of wires Easy 2 wire connection 2 or 3 wires  Easy 2 wire connection
Typical response time Fastest (~5 ms) Fast (-400 ms) Faster (-100 ms)
Calibration schedule Every 3-6 months Every 1 or 2 years Every 1 or 2 years
Maintenance efforts High (up to 12h/device/year) Lower (up to 1h/device/year) Low (up to 0.5h/device/year)
Installed unit cost Low($X) High (up to $5X) Lower ($1.5X)

IMAGE 1: Comparison between a mechanical switch, transmitter and electronic switch

Benefits of Electronic Switches

As industrial facilities upgrade pressure and temperature instrumentation in an effort to improve the efficiency of their operations, electronic switches can deliver several benefits.

  • Maintenance efficiency
    Operators can spend between four and 12 hours per device per year maintaining a mechanical switch. Maintenance includes the labor and time required to inspect, test, calibrate and set the devices. Often, these switches must be removed from the equipment and taken back to the instrument shop for maintenance. With electronic switches, maintenance can be reduced by up to 90%, as it takes no more than 30 minutes to program the electronic switch, and does not require frequent calibration. Any calibration or resetting of the device typically can be performed in situ, saving labor. For a small plant with 100 switches, maintenance time can be reduced from 400 hours (50 labor days) to 50 hours (6 labor days).
  • Operational efficiency
    Unlike mechanical switches with components that move relative to each other for actuation (e.g., plungers, springs), electronic switches do not have moving components, eliminating mechanical wear and making them more vibration resistant. This results in greater reliability by eliminating false alarms from mechanical component shifts and more accurate performance for high vibration applications like pump systems. Enhanced reliability translates to better operational uptime.
  • Cost efficiency
    Some electronic switches come with a four to 20 milliamp (mA) output in addition to relay contacts. This means a single electronic switch can replace the functions of a transmitter, switch and gauge. This potentially reduces instrumentation inventory by 66%, as well as reducing the number of potential leakage points. In addition, since an electronic switch has better repeatability and accuracy (in terms of percentage error over full-scale range) than a mechanical switch, it can be used to substitute multiple ranges of mechanical switches and achieve a similar magnitude of performance error. Operators can standardize on a specific model of an electronic switch for the majority of their pump applications, streamlining their instrumentation inventory and cost. Additionally, from a Management of Change (MoC) perspective, the ability to drop in electronic switches to existing two-wire switch infrastructure makes change management straightforward and hassle-free. Minimal new documents or engineering drawing changes are needed, eliminating the costs associated with MoC.

Learn more from our case study in the Water & Wastewater industry.

Pump systems are vital to a plant’s operation and should be optimized for maintenance, operational and cost efficiencies. The instrumentation on pump systems plays an essential role in achieving these efficiencies. Plant or pump operators should consider electronic switches as an upgrade alternative since they are affordable, easy to install/program/maintain and provide some degree of process data and device diagnostics to make informed decisions and improve plant efficiency.

Related Articles

Verify Pump Performance

Conducting performance testing in a controlled environment is essential for both pump designers and users to ensure reliability and efficiency.…

Related Whitepapers

Corrective vs. Preventive Maintenance: Which is Better?

Corrective Maintenance This is performed only after a failure occurs in the equipment, which can lead to unexpected downtime and costly repairs. Although it is…

Torque Sensors For Any Application

This guide from S. Himmelstein & Company details their torque sensor solutions, designed to meet the demands of any industry. Learn about: Ultra-Precise Spline Drive…

What is Water Hammer and Why It Is Important to Prevent?

Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the…

Five Reasons To Choose A Bearingless Torque Sensor

Benefits that improve your torque measurements Best real-world accuracy Highest Overload Highest Overrange

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *