Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

What is Acceleration Head?

Applied Flow Technology
Pipe flow analysis model of acceleration head with a reciprocating pump

What is Acceleration Head?

In this recent post from Applied Flow Technology, Dave Miller, Engineering Software Development Specialist, discusses Acceleration head, explaining that it “…is the energy required to change the velocity of the liquid in the system from an at rest, or zero condition, to some non-zero value.”

In this post, Miller uses a couple car analogies to explain acceleration head (excerpt below).

The race car will accelerate to some maximum velocity, and then decelerate back to zero. The car does this by adding and removing energy using the engine and the brakes. Similarly, it takes energy to accelerate the liquid in a piping system. In another analogy, consider a car traveling across a city. In one case, the car is driven on an interstate highway at a constant speed. It takes a certain amount of energy to overcome the road and mechanical friction to maintain that constant speed. But if the car was driven on the city streets, having to stop and go at every stoplight along the way, the trip will take a lot more energy, and gasoline, due to the constant acceleration and deceleration of the vehicle.

Traditional friction analysis of flows in pipes is based on constant, steady-state flows, as you would find in centrifugal pump flow. When starting a centrifugal pump, there is a peak power requirement that occurs due of the extra energy required to accelerate the liquid from a zero velocity to a steady-state flow velocity.

In the case of reciprocating pumps, the flow is not true steady-state flow, but is continually accelerating and decelerating. This continual change in fluid velocity requires more energy, or acceleration head, so traditional friction loss models may not be completely accurate when performing flow analysis.

Read more about the effects of Acceleration Head and how to calculate it for reciprocating and positive displacement pumps.

AFT Fathom

Training Seminars offered by Applied Flow Technology

Related Articles

Related Whitepapers

Energy Efficient Plant Receives Award: A Healthcare Facility Installation

Despite the complex structure of the Mater Dei hospital in Betim, Armstrong was able to deliver a reliable, energy efficient solution with the ipc 9511…

Grundfos Heating Handbook: Hydronic Heating Systems

Grundfos’ NEW Hydronic Heating Handbook is now available. This comprehensive resource offers valuable insights into hydronic piping strategies, pump sizing, selection, troubleshooting tips, and more.…

Properties of Carbon Graphite

Laminar structure: The molecular structure of carbon graphite consists of layers of carbon atoms arranged in flat and parallel structures, providing high mechanical strength and…

CFturbo BLADERUNNER Centrifugal End-Suction Pump Casestudy

The CFturbo BLADERUNNER 2024 is a unique and innovative tool that will outperform the known capabilities of an automated simulation process for Turbomachinery performance maps.…

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *